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Introduction

Debbie Callahan has recently developed smaller versions of distributed-radiator targets for heavy-ion 
drivers with yields of 165 MJ for 1.75 MJ of R~0.03 g/cm2 ions, suitable for an IFE Engineering Test 
Facility (ETF), DEMO, or small power plant. However, the design requires an equivalent circular 
beam spot radius of 1.3 mm at the target (more than 2 x smaller than for a 5.9 MJ target), and a 12 
degree half-angle constraint on the multi-beam focusing array envelopes. The small target spot and 
beam-array angle constraints are likely to prove difficult to meet for traditional quadrupole-focusing 
arrays that must be far enough back from the target to allow neutron shielding, even taking into 
account a factor of two smaller fusion yield per pulse, and even assuming complete plasma 
neutralization of beam space charge in the chamber. This preliminary note suggests that a pair of 
axisymmetric-cusp focusing magnets straddling the target, but with windings outside the chamber's 
molten-salt blanket (Fig. 1), might meet the small target spot requirement by focusing a large number 
of beams distributed around an annulus of ion trajectories which map into the target's annular 
distributed radiator. Recent hydrodynamic fluid calculations by Karani Gulec at UCLA suggest the 
feasibility of annular Flibe vortex flows similar to those shown in Fig. 1. This note shows that the 
resulting close-integration of the focusing magnets with this type Flibe-protected chamber allows an 
effective magnetic focal length of 1.5 meters for certain cases described below, which in turn leads to 
the required smaller target spots for reasonable transverse and longitudinal beam velocity spreads. 

Flibe vortex shields coils

Target at B = 0 cusp null
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Choice of ion mass and charge state for local beam propagation

           While solenoids can be used as axisymmetric focusing magnets with focusing fields 
increasing linearly with radius (for radii small compared to the winding radii), they generally require 
much stronger fields than would quadrupole magnets of similar size, and that fact, together with the 
desire to achieve very short focal lengths with reasonable fields at the coil windings, forces the use 
of high-charge-state for this scheme by stripping of the incoming ions beams before entering the 
chamber/focusing field, whatever the ion charge state in the accelerator and drift-compression 
regions prior to final focus.  One needs a uniform charge-state by stripping for subsequent uniform 
focusing, such as might be achieved by either field-ionization using short-pulse lasers, or by using 
foils. Experiments at the LBNL Bevalac and elsewhere with ion stripping using high-Z metal foils 
showed that foils can either fully strip the ions, or strip to the K-shell (helium-like ions) with 
negligible Rutherford scattering, as long as the ion energy per amu is high enough that a cold 
electron in the lab frame has enough energy to strip the desired ion bound states. For the low ion 
ranges considered in Debbie's targets (0.03 g/cm2), we have to use ions masses below 100 to 
meet this condition (Lead won't fully strip, Krypton, or lower, if necessary, will strip at least to the 
K-shell). The required metal foil thickness are small compared to the ion range, so that the foil 
stripping losses are relatively small and acceptable. 
           The stripping "foil" can also be a source of electrons for axial beam neutralization, as 
Debbie Callahan and I showed was very effective in our 97 Heidelberg paper. One can use fine 
droplet sprays of Mercury for a power plant stripper. This scheme would be similar to the 
"Mini-focus" as proposed by Ed Lee, except that here we would expect, based on the 
Callahan/Logan Heidelberg paper, with electrons coming out of the stripper into the beam, as well 
as a dense residual plasma on the chamber side of the stripper, virtually 100 % neutralization of 
the beam current as well as space-charge. Accordingly, we would not depend on the vagarities of 
pinching with a particular partial beam current neutralization, but would design for ballistic focusing 
in the cusp field, with the spot size determined only by the beam transverse and longitudinal 
emmittance for a short focal length, as will be assumed in the calculations here. An advantage of 
this approach is that it also dispenses with the uncertainties of variable and partial strippping of 
ions enroute to the target, an issue that was raised again recently by Rob Goldston.
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the ion velocity normalized to c.β T A,( ) 1 γ T A,( ) 2−
−:=

γ T A,( ) 1
e T⋅

A Mp⋅ c2⋅
+:= the relativistic gamma factor, with T the kinetic 

energy in eV, A the atomic mass number

Vacuum permeability (Henrys/m)µo 4 π⋅ 10 7−⋅:= (Amps) -constant in 
 beam perveance)

Io 3.1 107⋅:=

Vacuum permittivity (Farads/m),εo 8.85 10 12−⋅:=

(kg), the electron 
rest mass

me 9.1 10 31−⋅:=(m/s)  the speed of light, c 3 108⋅:=

(C) electron charge,e 1.6 10 19−⋅:=(kg),  the rest mass of a proton,Mp 1.67 10 27−⋅:=

Constants

Analysis



β T A,( ) 0.173= γ T A,( ) 1.015= δT 0:=
To get the width of the beam spot due to parallel momentum spread, we calculate the kinetic 
energy spread corresponding to the given δpp:

δTpar root
γ T δT+ A,( ) β T δT+ A,( )⋅

γ T A,( ) β T A,( )⋅
1− δpp− δT,







:= δTpar 4.77 106×= (eV)

The normalized emittance can be expressed in terms of a transverse ion temperature ∆Tx :

εn T ∆Tx, A, af,( ) 2 γ T A,( )⋅ af⋅
e ∆Tx⋅

A Mp⋅ c2⋅
⋅ 106⋅:= (π mm-mr), 

where ∆Tx  (in eV) is measured at the beam radius af just before the final focus lens. The factor 
of 106 is inserted so that the normalized emittance can be expressed in the usual units of 
millimeters times milliradians. This equation can be solved for the allowed ∆Tx for a given 
normalized emmittance εn and input beam minor radius af , with ellipticity ell at final focus:

ell 3:= a 5 10 2−⋅:= (m) af ell a⋅:= ∆Tx
εno

2 106⋅ γ T A,( )⋅ af⋅








2

A⋅
Mp
e

⋅ c2⋅:=

∆Tx 63.64= (eV)
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       For the following  calculations, we will assume double-range Krypton, with a foot at 1.2 GeV, 
and a main pulse at 1.7 GeV, as a compromise between accelerator and beam compression 
difficulty increasing with lower mass ions, and accelerator length and cost increasing with higher 
energy ions.  The double-range is also to help ensure complete stripping, and raises the driver 
energy a small amount, from 1.75 MJ to 2 MJ. For Krypton, the K-edge is at 14.3 keV, with the 
main L-edge at 1.9 keV. A cold stripping electron has an energy in the beam frame of

A 83.8:= (amu) 0.5
me
e

⋅ β 1.2 109⋅ A,( ) c⋅( )2⋅ 7.6 103×= (eV), for the foot pulse

and 0.5
me
e

⋅ β 1.7 109⋅ A,( ) c⋅( )2⋅ 1.1 104×= (eV), for the main pulse.

Thus, we estimate the Krypton will strip to the K-shell, 
and the charge state will be that of helium-like Krypton q 34:=
The assumed transverse and parallel beam velocity spreads are assumed to be characterized 
by a normalized beam emittance and parallel momentum spread at final focus of : 

εno 5:= (π mm-mr) δpp 2 10 3−⋅:= (delta-p over p), respectively.

(Wayne's code model found solutions for the small target with εno = 0.8 π mm-mr and δpp = 
6 x 10-3 for 192 beams of Krypton for quadrupole focusing at Lf = 2 m, which has to be 
somehow achieved for small beams and small focusing angles of 10 milliradians. Here, the 
effective focusing angles are 100 milliradians, so that a higher transverse emmittance, but 
lower parallel spread, are tolerated). First, we calculate the cusp fields that are required at 
the above charge state to focus an annular pattern of foot beam pulses that enter the 
system nearly parallel to the axis, and then we will calculate what entrance angles will also 
focus the peak beams to the target at the same field. 
Foot pulse ion energy T 1.2 109⋅:= (eV)



a4 1:= x4 1.5:=

I5 mc 1⋅ 106⋅:= a5 1:= x5 2.5−:= I7 mc− 3⋅ 106⋅:= a7 1:= x7 3.5−:=

I6 mc− 1⋅ 106⋅:= a6 1:= x6 2.5:= I8 mc 3⋅ 106⋅:= a8 1:= x8 3.5:=

The field at any point along the ion trajectory (in the paraxial approximation), is given by summing
the contributions of the eight coils specified above:

Bz z( )

1

8

nc

Bz Inc anc, xnc, z,( )∑
=

:= Br r z,( )

1

8

nc

Br Inc anc, r, xnc, z,( )∑
=

:=

By iteration using the above Bz(z) we determine the initial injection plane zo (where the ion 
stripper jet is placed at the outside entrance cusp null): 

Bz 3.047278−( ) 6.26− 10 8−×= (T) zo 3.047278−:= (m)
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The corresponding transverse radial velocity vrx and angular spread θx at the input to the 
final focus is 

vrx
2 e⋅ ∆Tx⋅

A γ T A,( )⋅ Mp⋅
:= vrx 1.197 104×= (m/s) θx

vrx
β T A,( ) c⋅

:= θx 2.312 10 4−×=

(radians)
We will use these velocity and angular spreads on test ion to characterize the beam spot envelope 
size on target. For the fields, we use the familiar paraxial approximation to get the Bz and Br 
components (in MKS units- tesla): (future work can use exact fields taken from elliptic integrals, but 
those won't likely change the basic orbits much after a little tweaking for off-axis ion injection).  

Bz I a, x, z,( )
µo I⋅

2
a2

a2 z x−( )2+ 
1.5

⋅:= Br I a, r, x, z,( )
3 µo⋅ I⋅

4 a⋅
r z x−( )⋅

a2








⋅ 1
z x−
a







2
+









2.5−

⋅:=

where "a" is the radius of an assumed winding cross-section (filamentary current approximation) at 
a z-location "x" for a given coil. To simplify the determination of coil currents which can bend chosen 
ion trajectories into the target, we take a set of coils symmetric about the z=0 target location, and 
we make the innermost and outermost pairs of coil currents opposing so as to create a cusp null at 
the chosen injection plane as well as at the target center. Thus, we inject ions with zero canonical 
angular momentum into the focusing system, so that ion orbits can pass through the r=0 axis: 

mc 0.26023
36
34
⋅:= This current multiplier is adjusted to focus the ions on target after crossing.

I1 mc 15⋅ 106⋅:= a1 1.5:= x1 0.75−:= I3 mc 3⋅ 106⋅:= a3 1:= x3 1.5−:=

I2 mc− 15⋅ 106⋅:= a2 1.5:= x2 0.75:= I4 mc− 3⋅ 106⋅:=



<-these two have both transverse and parallel spreads added

To1 T:= To2 T:= To3 T:= <-principle ion orbits = foot energy

To4 T
δTpar
2

+:= To5 T
δTpar
2

−:= <- parallel velocity spread added

To6 T
δTpar
2

+ ∆Tx+:= To7 T
δTpar
2

− ∆Tx−:= <-parallel + transverse spreads added

vroj sin θoj( )− β Toj A,( )⋅ c⋅:= vzoj cos θoj( ) β Toj A,( )⋅ c⋅:= <-corresponding initial orbit
radial and axial velocities

With these above selected seven ion initial conditions, we next integrate the 
radial force = q vθ x Bz on each ion orbit through the cusp focusing system, using 
the local vθ derived from conservation of canonical angular momentum.
kmax 2000:=  For k 1 kmax..:= steps δz 2 zo⋅ kmax

1−⋅:= δz 3.05 10 3−×= (m)

Initial conditions for each test ion is set by MathCAD

r1 j,

z1

t1 j,

vr1 j,

vθ1 j,

vz1 j,




















roj

zo

0

vroj

0

vzoj





















:=
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We run seven test ion orbits: the first three without either transverse or longitudinal velocity spread, 
starting at the outer radius, the midpoint, and the inner radius of the injection annulus. The fourth 
and fifth test ions have the + and - parallel momentum corresponding to the assumed δp/p, and the 
sixth and seventh test ions have the same δp/p spread plus the transverse spread corresponding 
to the assumed normalized emittance of the beams. The indici "j" will denote each ion orbit case.

For j 1 7..:= test orbits, we define intitial injection radii (in meters)

ro1 0.3:= ro2 0.25:= ro3 0.2:= ro4 ro2:= ro5 ro2:= ro6 ro2:= ro7 ro2:=

The corresponding intial canonical angular momenta are zero,
and this is preserved in the orbits; e.g, Pθj 0.5 q⋅ e⋅ Bz zo( )⋅ roj( )2⋅:=

Pθ1 0= Pθ7 0=
The initial angles are iterated for the first three principle orbits (without the velocity spreads), 
starting with zero as an initial guess, to bring all three principle rays into focus at Debbies 
target radiator annulus:

θo1 .1 10 4−⋅:= θo2 18 10 4−⋅:= θo3 27 10 4−⋅:= <-principle rays start ~parallel to the axis for the foot.

θo4 θo2:= θo5 θo2:= <-these two have only the parallel spread added

θo6 θo2 θx−:= θo7 θo2 θx+:=



Then each j = 1 ..7 ion test orbits are calculated for k-steps through the focusing system:

rk 1+ j,

zk 1+

tk 1+ j,

vrk 1+ j,

vθk 1+ j,

vzk 1+ j,




















rk j, vrk j,
δz
vzk j,
⋅+

zk δz+

tk j,
δz
vzk j,

+

vrk j,
q e⋅ vθk j,⋅ Bz zk( )⋅

A Mp⋅ γ Toj A,( )⋅

δz
vzk j,
⋅+

Pθj 0.5 q⋅ e⋅ Bz zk( )⋅ rk j,( )2⋅−

γ Toj A,( ) A⋅ Mp⋅ rk j,⋅

β Toj
γ Toj A,( )
2 e⋅

Mp⋅ A⋅ vrk j,( )2 vθk j,( )2+ ⋅− A,







c⋅





































:= F=Ma radial force
equation gives vr

vθ obtained from Pθ

total ion energy conservation

3 2 1 0 1 2 34

2

0

2

4

6

rk 1, 10⋅

rk 2, 10⋅

rk 3, 10⋅

Br 0.1 zk,( ) 10⋅
Bz zk( )

vrk 1, 10 7−⋅

vθk 1, 10 7−⋅

vzk 1, 10 7−⋅

zk

Krypton

T 1.2 109×= (eV)
(Foot pulse)

q 34=

Charge-state

distance along axis z
Fig. 2  Plots of principle orbits through the focusing system shown in Fig. 1. The fields and 
velocities exhibit the expected symmetry properties of the conservation laws. Note the radial scale 
is magnified 5 x with respect to the z-axis. (Foot pulse). Bz ~ 1.6 T cusp fields required at q =34.
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Next, we replot the above orbits with greater magnification around the target ceter at r=0, z=0.
k 990 1005..:=

Holraum lines: bbrk 600 Φ 998 k−( )⋅ 1.6 1 0.33 k 999−( )⋅ Φ k 999−( )⋅+ ⋅ Φ k 999−( )⋅−:=
hirk 600 Φ 998 k−( )⋅ 2.8 1 0.19 k 999−( )⋅ Φ k 999−( )⋅+ ⋅ Φ k 999−( )⋅−:=

16 14 12 10 8 6 4 2 010

8

6

4

2

0

2

rk 1, 1000⋅

rk 2, 1000⋅

rk 3, 1000⋅

rk 4, 1000⋅

rk 5, 1000⋅

rk 6, 1000⋅

rk 7, 1000⋅

bbrk

hirk

zk 1000⋅

X-target
  center

Distance along axis-->  (mm)

Fig. 3. The foot-ion orbits are now plotted on a mm-scale with equal radial and axial 
magnifications, distances in millimeters. The outlines of the hohlraum showing the 
approximate beam-block and conical-radiator sections are superimposed to show how the 
three principle rays (red, blue and green) are first focused onto the target radiator annulus by 
adjusting the cusp field and the initial (near-parallel) ion injection angles. The effect of adding 
the parallel momentum spread is shown by the dotted line about the central blue ray, and the 
effect of combined parallel and transverse velocity spread is shown by the lines with x's. All 
representative ions should fill-in this maximum envelope. (Foot-pulse orbits) 
 

Page 7



(radians)

The stripping electron energy for the peak 0.5
me
e

⋅ β T A,( ) c⋅( )2⋅ 1.1 104×= (eV)

...is still below the Krypton K-shell, so q 34= as in the foot.

The initial angles are iterated again for the first three principle orbits (without the velocity 
spreads), now larger angles pointing to the target to bring all three principle rays into focus 
at the same target radiator annulus for the higher peak energy in the same magnetic fields

θo1 4.25 10 2−⋅:= θo2 3.61 10 2−⋅:= θo3 2.942 10 2−⋅:= <-principle rays now point to the axis
 for the higher energy peak ions, because
 now the same cusp field bends the
higher energy peak ions less than
for the foot.

θo4 θo2:= θo5 θo2:= <-these two have only the parallel spread added

θo6 θo2 θx−:= θo7 θo2 θx+:= <-these two have both transverse and parallel spreads added
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Next, we find a different set of initial injection angles into the same B=O injection annulus, 
such that the peak ions would also focus to the same target annulus with the same cusp fields 
used for the foot:

At peak pulse, T 1.7 109⋅:= (eV) β T A,( ) 0.205= γ T A,( ) 1.022= δT 0:=

The paralle energy spread for the same δpp in the peak is

δTpar root
γ T δT+ A,( ) β T δT+ A,( )⋅

γ T A,( ) β T A,( )⋅
1− δpp− δT,







:= δTpar 6.74 106×= (eV)

∆Tx
εno

2 106⋅ γ T A,( )⋅ af⋅








2

A⋅
Mp
e

⋅ c2⋅:= ∆Tx 62.86= (eV)

The corresponding transverse radial velocity vrx and angular spread θx at final focus are 

vrx
2 e⋅ ∆Tx⋅

A γ T A,( )⋅ Mp⋅
:= vrx 1.186 104×= (m/s) θx

vrx
β T A,( ) c⋅

:= θx 1.933 10 4−×=
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Then each j = 1 ..7 ion test orbits are re-calculated for the peak ion energy and initial injection 
angles for k-steps through the focusing system:

r1 j,

z1

t1 j,

vr1 j,

vθ1 j,

vz1 j,




















roj

zo

0

vroj

0

vzoj





















:= Initial conditions for each test ion is set by MathCAD

(m)δz 3.05 10 3−×=δz 2 zo⋅ kmax
1−⋅:=stepsk 1 kmax..:= Forkmax 2000:=

With these above selected seven ion initial conditions for the peak pulse, we next again 
integrate the radial force = q vθ x Bz on each ion orbit through the cusp focusing system, 
using  the local vθ derived from conservation of canonical angular momentum.

<-corresponding initial orbit
radial and axial velocities

vzoj cos θoj( ) β Toj A,( )⋅ c⋅:=vroj sin θoj( )− β Toj A,( )⋅ c⋅:=

<-parallel + transverse spreads addedTo7 T
δTpar
2

− ∆Tx−:=To6 T
δTpar
2

+ ∆Tx+:=

<- parallel velocity spread addedTo5 T
δTpar
2

−:=To4 T
δTpar
2

+:=

(eV)T 1.7 109×=<-principle ion orbits = peak energyTo3 T:=To2 T:=To1 T:=



rk 1+ j,

zk 1+

tk 1+ j,

vrk 1+ j,

vθk 1+ j,

vzk 1+ j,




















rk j, vrk j,
δz
vzk j,
⋅+

zk δz+

tk j,
δz
vzk j,

+

vrk j,
q e⋅ vθk j,⋅ Bz zk( )⋅

A Mp⋅ γ Toj A,( )⋅

δz
vzk j,
⋅+

Pθj 0.5 q⋅ e⋅ Bz zk( )⋅ rk j,( )2⋅−

γ Toj A,( ) A⋅ Mp⋅ rk j,⋅

β Toj
γ Toj A,( )
2 e⋅

Mp⋅ A⋅ vrk j,( )2 vθk j,( )2+ ⋅− A,







c⋅





































:= F=Ma radial force
equation gives vr

vθ obtained from Pθ

total ion energy conservation

3 2 1 0 1 2 34

2

0

2

4

6

rk 1, 10⋅

rk 2, 10⋅

rk 3, 10⋅

Br 0.1 zk,( ) 10⋅
Bz zk( )

vrk 1, 10 7−⋅

vθk 1, 10 7−⋅

vzk 1, 10 7−⋅

zk

Krypton

T 1.7 109×=
(Peak pulse)

q 34=

Charge-state

distance along axis z
Fig. 4  Plots of principle orbits through the focusing system shown in Fig. 1 for the peak ion 
energy. Note now that the injection angles point toward the target since the same cusp fields bend 
the higher energy peak ions less than the previous foot-pulse ions. Same plot scales as in Fig. 2. 
Same Bz ~ 1.6 T cusp fields required at same q =34.
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Next, we replot the above orbits with greater magnification around the target ceter at r=0, z=0
k 990 1005..:=

Holraum lines: bbrk 600 Φ 998 k−( )⋅ 1.6 1 0.33 k 999−( )⋅ Φ k 999−( )⋅+ ⋅ Φ k 999−( )⋅−:=
hirk 600 Φ 998 k−( )⋅ 2.8 1 0.19 k 999−( )⋅ Φ k 999−( )⋅+ ⋅ Φ k 999−( )⋅−:=

16 14 12 10 8 6 4 2 010

8

6

4

2

0

2

rk 1, 1000⋅

rk 2, 1000⋅

rk 3, 1000⋅

rk 4, 1000⋅

rk 5, 1000⋅

rk 6, 1000⋅

rk 7, 1000⋅

bbrk

hirk

zk 1000⋅

X-target
  center

Distance along axis-->  (mm)
Fig. 5. The peak-ion orbits corresponding to the injection angles shown in Fig. 4 are now 
plotted on the same mm-scale as in Fig. 3.  The outlines of the same hohlraum are shown 
again with the approximate beam-block and conical-radiator sections superimposed to show 
how the three principle rays (red, blue and green) (now at the peak ion energy) are first 
focused onto the target radiator annulus by adjusting only the initial injection angles as shown 
in Fig. 4. The effect of adding the parallel momentum spread is shown by the dotted line about 
the central blue ray, and the effect of combined parallel and transverse velocity spread is 
shown by the lines with x's. All representative peak ions should fill-in this maximum envelope. 
This shows how Callahan's target requirements for different foot and peak beam energies can 
be brought to a common focus at the target, by having a circle of peak beams at larger radius 
around a ring of foot-pulse beams shooting at the same injection annulus in this focusing 
scheme. This would put the end of the beam compression transport lines a few meters further 
to the left of Fig. 1. Space-charge effects should be tolerable for injection across such a space 
into the ion stripper jey and cavity plasma, since each beam footprint is allowed to be an 
ellipse as large as 30 x 10 centimeters (for this example).
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Discussion and future research

There are many implications of this memo that need to be explored, including:
(1) attempt a preliminary layout of a conventional quadrupole focusing array for this small target, at 
least to the same level as this memo--with neutron shielding interfaces, partial beam space-charge 
neutralization and stripping effects with deep-shell ionization included, to see if we really need to 
look at alternative focusing schemes like this one in order to exploit Callahan's small target.  
(2) redo these caculations using exact fields without the paraxial approximation, to check the effect 
of radial non-linearities at injection radii of 10 to 30 % of the coil radii--see if the coil radii have to be 
increased, or if the injection angles can be tweaked to compensate for such non-linear radial field 
components.
(3) a beam transport and injection design to get as many as perhaps 50-100 beams injected into 
the annular pattern as suggested in Fig. 1. Care has to be taken to shield out any stray fields 
between the end of the beam compression transport lines and the first low field cusp null, to avoid 
non-zero Pθ affecting the beam radial convergence near the target. Evaluate effects of small but 
non-zero vθ components due to practical injected beam geometry from the transport lines.
(4) review the metal foil stripping data and theoretical models for stripping of ions in 
condensed-phase metals, for the medium-heavy ions in the 20 MeV per amu regime for HIF, to 
determine more precisely the uniformity of charge states that are possible, or to determine at what 
lower mass ion than Krypton would ions be assuredly fully stripped. Estimate Rutherford scattering in 
the stripping process to check its significance.
(5) look for models like IPROP to check that beam current as well as charge neutralization is 
complete, in this situation in which significant residual Flibe vapor hangs around somewhat 
magnetised in the chamber between shots due to the cusp field (see further discussion below).

Other implications of this chamber scheme to be explored
            Since the fusion yield of 165 MJ with this small target is less than half that assumed for 
HYLIFE-II, while the liquid pocket radius can be twice as large as HYLIFE-II, it is possible that this 
example, or one slightly modified, if necessary, with a somewhat larger vortex radius, will result in the 
elimination of isochoric bulk liquid break-up due to neutron energy deposition being reduced an 
order of magnitude. If one can then also limit the amount of cold Flibe vapor that is ablated-off the 
liquid surface from target debris and x-rays, the surface shocks may be mitigated to the point that 
there is no re-bound surface "lift-off" under the 10-g artifical gravity created by the vortex 
(Gulac-UCLA calculations, discussions with Ralph Moir), there may no longer be any liquid droplets 
or splash to clear in the pocket between shots, just some very hot, relatively low density, ionized 
Flibe vapor decaying by radiation cooling and flow along the field lines out the ends of the two 
external cusps. Note that the strong cusp field in Fig. 1 should be MHD stable (please forgive the 
use of an MFE-term) to confine target-debris plasma, in the short-term sense of retarding direct 
ablation of the Flibe liquid vortex surface by the target debris plasma. If the target hohlraum wall, 
which Ralph proposes to make from frozen Flibe castings coated with hi-Z, were made of order 
1-cm thick, then one can show that the x-ray output spectrum is downshifted from several hundred 
eV down to perhaps 10's of eVs. This would lead to greatly reduced Flibe masses ablated from the 
vortex surface, as well as hotter, even ionized Flibe vapor, with much reduced momemtum impluse 
and weakened ablation shocks. This may eliminate the need for forced-displacement clearing of 
the pocket, and since the thick frozen-Flibe hohlraum casings can survive injection into the dense 
10 eV chamber plasma, there may also be no need to fully extinguish the chamber plasma 
between shots back to vacuum. This raises the far-reaching prospect of very-high pulse-rate 
capability for this type of chamber, perhaps up to 30-60 Hz, as well as to other possibilities
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